If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+5x-0=0
We add all the numbers together, and all the variables
24x^2+5x=0
a = 24; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·24·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*24}=\frac{-10}{48} =-5/24 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*24}=\frac{0}{48} =0 $
| −6b−12=−7b+21 | | 10+8x=10x+10 | | 8x=16+6 | | 13x=14x-4 | | -5y+8=-2(5+y) | | 2/18=6/x | | (10n)+10=100 | | -3x+6=-3(x−2) | | P+0.15p=0.15(2p) | | X+140=x+52 | | -4x+3=-6+9 | | 4x+6=-7x-16 | | 9x+6=2x+11 | | 5(3n+5)=85 | | -9+7=41y-2 | | 25n+4=20, | | -200=-8(1-8x | | 62x+1=1+28x | | -2.8=b | | -6+7x=15x+10 | | a/6+7=8 | | (x+x+1)^2=729 | | 2(3x-8)=4-3(5x-2) | | 4x^2-82x=264 | | 18=2(a-1) | | 55=60+x | | 23=2v+9 | | 2m-6+3m=15-2m | | 8+5v=23 | | 4(2x+1)16x−2=-8 | | 4−13(−x+5)=1+2(1−x) | | -12=-6+w/3 |